Solutions

3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients Factoring Techniques

Equations of Quadratic Type Use substitution to solve the following.

• 
$$x^{4} + 14x^{2} + 45 = 0$$
  
•  $(x^{2} + x)^{2} + 18(x^{2} + x) + 72 = 0$   
•  $0 = \chi^{4} + 14\chi^{2} + 45 = (\chi^{2})^{2} + 14\chi^{2} + 45 = (\chi^{2} + 9)(\chi^{2} + 5)$   
 $= 7 \chi^{2} + 3i_{1}^{2} + 55i$   
•  $u = \chi^{2} + \chi^{2} = 7 0 = u^{2} + 18u + 72 = (u + g)(u + 12) = 7 u = -6_{1} - 12$   
 $\int_{0} \chi^{2} + \chi^{2} = -6 \text{ or } -12, \quad \chi^{2} + \chi + 6 = 0 \Rightarrow \frac{-12\sqrt{1-24}}{2} = -\frac{1}{2} \pm i\sqrt{\frac{2}{2}}u$   
 $\cdot \chi^{2} + \chi + 12 = 0 \Rightarrow \frac{-12\sqrt{1-46}}{2} = -\frac{1}{2} \pm i\sqrt{\frac{4}{2}}u^{2}$ 

Factor by Grouping Solve the following.

• 
$$x^{3} - x^{2} + 4x - 4 = 0$$
  
•  $2r^{2} - 7r + 3 = 0$   
•  $2r^{2} - 7r + 3 = 0$   
•  $2r^{2} - x^{2} + 4x - 4 = x^{2}(x-1) + 4(x-1) = (x^{2} + 4)(x-1) = 7$   $x=1, \pm 2i$   
•  $0 = 2r^{2} - 7r + 3 = 7$   $2r^{3} = 6$  Let  $m = -6, n = -1$  so that  
•  $0 = 2r^{2} - 7r + 3 = 7$   $2r^{3} = 6$  Let  $m = -6, n = -1$  so that  
•  $0 = 2r^{2} - 7r + 3 = 7$   $2r^{3} = 6$  Let  $m = -6, n = -1$  so that  
•  $0 = 2r^{2} - 7r + 3 = 7$   $2r^{3} = 6$  Let  $m = -6, n = -1$  so that  
•  $1 = 7$   $m \cdot n = 6$  and  $m + n = -7$ .  
Then  $2r^{2} - 7r + 3 = 2r^{2} - 6r - r + 3 = 2r(r-3) - (r-3) = (2r-1)(r-3)$   
 $= 7 r^{2} - \frac{1}{2}r^{3}$ .

**Long Division** Solve the equation  $x^3 - x^2 + 4x - 4 = 0$  given that x = 1 is one of the solutions.

