Solutions:
3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients Factoring Techniques

Equations of Quadratic Type Use substitution to solve the following.

$$
\begin{gathered}
\cdot x^{4}+14 x^{2}+45=0 \\
\cdot\left(x^{2}+x\right)^{2}+18\left(x^{2}+x\right)+72=0 \\
0=x^{4}+14 x^{2}+45=\left(x^{2}\right)^{2}+14\left(x^{2}\right)+45=\left(x^{2}+9\right)\left(x^{2}+5\right) \\
\Rightarrow x= \pm 3 i, \pm \sqrt{5 i} \\
\cdot u=x^{2}+x \Rightarrow 0=u^{2}+18 u+72=(u+6)(u+12) \Rightarrow u=-6,-12 \\
\quad \text { So } x^{2}+x=-6 \text { or }-12, \cdot x^{2}+x+6=0 \Rightarrow \frac{-1 \pm \sqrt{1-24}}{2}=-\frac{1}{2} \pm i \sqrt{23 / 4} \\
\cdot x^{2}+x+12=0 \Rightarrow \frac{-1 \pm \sqrt{1-166}}{2}=-\frac{1}{2} \pm i \sqrt{4 / 4}
\end{gathered}
$$

Factor by Grouping Solve the following.

- $x^{3}-x^{2}+4 x-4=0$
- $2 r^{2}-7 r+3=0$

$$
\begin{gathered}
\cdot 2 r^{2}-7 r+3=0 \\
0=x^{3}-x^{2}+4 x-4=x^{2}(x-1)+4(x-1)=\left(x^{2}+4\right)(x-1) \Rightarrow x=1, \pm 2 i
\end{gathered}
$$

- $0=2 r^{2}-7 r+3 \Rightarrow \begin{cases}2 \cdot 3=6 & \text { Let } m=-6, n=-1 \text { so that } \\ b=-7 & m-n=6 \text { and } m+n=-2 .\end{cases}$

Then $2 r^{2}-2 r+3=2 r^{2}-6 r-r+3=2 r(r-3)-(r-3)=(2 r-1)(r-3)$

$$
\Rightarrow r=\frac{1}{2}, 3 .
$$

Long Division Solve the equation $x^{3}-x^{2}+4 x-4=0$ given that $x=1$ is one of the solutions.

$$
\begin{aligned}
& \text { So } \\
& x^{3}-x^{2}+4 x-4 \\
& =(x-1)\left(x^{2}+4\right) \\
& =x=1, \pm 2 i
\end{aligned}
$$

